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Abstract

Rift Valley fever (RVF) is a severe viral zoonosis in Africa and the Middle East
that harms both human health and livestock production. It is believed that RVF in
Egypt is introduced by the importation of infected animals from Sudan. In this paper,
we propose a three-patch model for the process that animals enter Egypt from Sudan
are moved up the Nile, and then consumed at those population centres. The basic
reproduction number for each patch is introduced and then the threshold dynamics
of the model are established. We simulate an interesting scenario showing possible
explanation to the observed phenomenon on the geographic spread of RVF in Egypt.
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1 Introduction

Rift Valley fever (RVF) is a viral zoonosis of domestic animals (such as cattle, sheep, camels
and goats) and humans caused by the RVF virus (RVFV), a member of the genus Phlebovirus
in the Bunyaviridae family. Initially identified in the Rift Valley of Kenya in 1931, outbreaks
of RVF have been reported in sub-Saharan Africa, Egypt, Saudi Arabia and Yemen. These
result in significant economic losses due to high mortality and abortion in livestock. The
virus is transmitted primarily by the bites of infected female mosquitoes. Several species of
Culex or Aedes mosquitoes are known vectors and some species of Aedes can also transmit the
virus vertically (mother-to-offspring). Humans can also become infected by direct/indirect
contact with the blood or organs of infected animals, but they cannot transmit it. To date,
two types of vaccines are available for veterinary use [12], but there is no licensed vaccine
for humans. Outbreaks of RVF in East Africa are typically associated with rainfall events
[16, 4]. Heavy rainfall is believed to induce outbreaks by raising water levels in low-lying areas
sufficiently to allow the hatching of Aedes eggs, which can persist during dry periods. Since
Aedes mosquitoes can transmit RVF vertically, the newly hatched mosquitoes can induce an
outbreak once they mature [7]. However, vertical transmission has not been demonstrated
in Egypt or Yemen, where outbreaks have also occurred. An alternative hypothesis is that
in such regions outbreaks may occur when the disease is introduced by the importation of
infected animals [8, 2, 3] or by the use of live virus vaccines [13] together with suitable
conditions for transmission, specifically high mosquito densities and the presence of large
numbers of host animals (2, 3].

Mathematical models have become an important tool in identifying disease transmission
process, assessing infection risk and prevalence, and optimizing control strategies. How-
ever, so far little has been done to model and analyze the RVF transmission dynamics [19)].
Gafl et al. [9] proposed a compartment model explored the mechanisms of RVFV circula-
tion including Aedes and Culer mosquitoes and livestock population, in which each adult
mosquito population is divided into classes containing susceptible, exposed and infectious
individuals and the livestock population is classified as susceptible, exposed, infectious and
recovered. To account for vertical transmission in Aedes mosquiotes, compartments for unin-
fected and infected eggs are also included. Meanwhile, only uninfected eggs are included for
Culex mosquitoes. They derived the basic reproduction number to assess the stability of the
disease-free equilibrium and performed sensitivity analysis to determine the most significant
model parameters to disease transmission. In [20], Mpheshe et al. modified the model in Gaff
et al. [9] to reduce egg classes of mosquitoes, include human population and exclude vertical
transmission in mosquitoes. They gave conditions for the stability of the disease-free equilib-
rium and persistence of the disease. Sensitivity indices of the basic reproduction number and
the endemic equilibrium were evaluated to study the relative importance of different factors
responsible for RVF transmission and prevalence. It is believed that RVFV is introduced
to a disease-free area by insects carried by wind and animal movements through trade [19].
Xue et al. [25] presented a network-based metapopulation model incorporating Aedes and
Culezr mosquitoes, livestock and human populations. They tested the model with data from
an outbreak of RVF in South Africa and analyzed the sensitivity of the model to its param-
eters. Recently, Chamchod et al. [5] proposed a simple but innovative model to investigate
the emergence of RVF outbreaks, and epizootic and enzootic cycles of RVFV. Many aspects



of their investigation have not been addressed in previous modeling studies. For example,
they considered the effect of vaccination on the transmission dynamics of RVEF'V. However,
these models either do not include spatial effects or are too complicated to perform rigorous
mathematical analysis.

The main purpose of this paper is to propose a mathematically tractable model with
spatial dynamics that can capture the hypothesis that Rift Valley fever outbreaks in Egypt
might arise when the importation of large numbers of animals from Sudan coincides with high
mosquito densities and there is an introduction of the infection during that period through
importation of infected animals, use of live virus vaccines, or some other mechanism. In the
next section, we develop a three-patch epidemic model to describe the spatial spread of RVF
in Egypt. In Section 3, the basic reproduction number for each patch is calculated and the
threshold dynamics of the model will be established. Moreover, the existence and stability
of the endemic equilibrium are discussed. In Section 4, we simulate an interesting scenario
showing possible explanation to the observed phenomenon on the geographic spread of RVF
in Egypt. A brief discussion is given in Section 5.

2 The model

The first outbreak of RVF in Egypt occurred in the Nile Valley and Delta in 1977 [11].
This was the first RVF outbreak recorded outside traditionally affected areas in sub-Saharan
Africa. Due to a combination of a lack of experience in dealing with RVF patients and insuf-
ficient public health programs, the outbreak caused at least thousands of human infections
and hundreds of human deaths [17]. Since then, Egypt has been experiencing continued RVF
outbreaks among domestic animals which indicates that the RVFV has become enzootic in
Egypt. The imported animals from Sudan and the Horn of Africa were usually not vacci-
nated against RVFV. Travel time from north-central Sudan, where RVF was epizootic, to
livestock markets in southern Egypt (Aswan Province), was less than 5 days, approximating
the incubation period of RVFV in sheep [8, 1]. So it is hypothesized that the recurrence of
epizootic is mainly caused by the continuous importation of infected animals from Sudan
and failure of the locally applied RVF vaccination program [13].

Egypt is an arid country with most of the population concentrated along the Nile, in the
Delta and near the Suez Canal. The imported animals enter southern Egypt from northern
Sudan, are moved up the Nile, and then consumed at these population centres. Vertical
transmission of RVF has not been shown to occur in Egypt [18]. For simplicity, we restrict
our focus on the disease transmission between domestic animals and mosquitoes. To capture
the idea that more mosquitoes lead to more transmission, it seems most natural to use
mass-action transmission terms. The movement timescale of animals is relatively short, so
we assume that there is no host reproduction during the journey. Therefore, the density
of hosts is determined by movement, mortality, and the rate at which they are introduced,
which could be set to depend on demand. We assume that there is no movement for vector
population because of their limited mobility. Assume also that the mosquito population
satisfies the logistic growth to maintain an equilibrium vector population. For epidemiology,
we use a simple SIRS model for hosts and an SI model for vectors.

Based on the above assumptions, we propose a three-patch model (Sudan-Nile-feast) with



Table 1: The state variables in model (2.1) and their descriptions

Symbol

Description

Si

S

=

Number of susceptible animals in patch ¢ at time ¢
Number of infectious animals in patch ¢ at time ¢
Number of recovered animals in patch i at time ¢
Number of susceptible mosquitoes in patch ¢ at time ¢
Number of infectious mosquitoes in patch ¢ at time ¢

animals movement from patch 1 to patch 2 and then from patch 2 to patch 3:

¢

\

=71 — o S1V) — uS + (R — ¢Sy,
=a1S Vi — (u+v+0)L —ch,

=l — (p+ )Ry — cRy,

— (0 + 1)~ 2B+ Vi - i - AR

= - Vi + BiLUs,
= ¢S — SV — pSs + (Ra — ¢S,
= CIl + CEQSng - (/L + v+ 5)]2 - CI;,

= CR1 + ’)’Ig - (,LL + C)RQ - CRQ,

=&6&(Us+ Vo) — £2];[2U2(U2 + V2)2 — Uy — BalaUs,

= —Va + Ba[2Us,

= ¢Sy — a3 &3V — puSs + (Ra — cSs,

=cly+ a3S3Va — (p+v +6) I3 — cl3,

= cRy + I3 — (1 + () R3 — cRs,

= &3(Us + Va) — 63];[;3 (Us + V3)? — v3Us — Bal3Us,
= —13V3 + B313Us.

(2.1a)

(2.1b)

(2.1c)

The state variables and parameters used in model (2.1) and their descriptions are pre-
sented in Table 1 and Table 2, respectively.



Table 2: The parameters in model (2.1) and their descriptions

Symbol

Description

T
c
7
]

7
¢
&
vy
M;
87]

Bi

Recruitment rate of animals

Movement rate of animals

Natural death rate for animals

Disease-induced death rate for animals
Recovery rate for animals

Rate of loss of immunity for animals

Growth rate of mosquitoes in patch ¢

Natural death rate for mosquitoes in patch 4
Carrying capacity for mosquitoes in patch 4
Transmission rate from vector to host in patch ¢
Transmission rate from host to vector in patch ¢

The total number of mosquitoes in patch ¢ at time ¢, denoted by NP(t), satisfies

Ny
di

v_fi_Vi

= (& — )Ny = = —(N7)%i=1,2,3,

and it converges to M; as t — oo for any positive initial value. Therefore, we may consider
the following reduced system

Ve

ds

_Elt_l =7 — oS Vi — uSy+ (R, — ¢S,

dl

*Eg‘ =aSiVi— (p+v+8)L —ch,

o7 (2.2a)
—dt_l =vh — (p+ ()R — chy,

dVv;

'—d—t}' = "VIW + /61]1(]\/[1 - ‘/1)7

s

—Zl-tg = CSl - 01252‘/2 - /v682 + CRZ - CSQ)

dly

'Zl"" = CIl -+ OfQSQ‘/Q - (,U:"’")/ -+ (5)[2 - CIQ,

d]g (2.2b)
_dt_z = cR; + vl — (1 + () Ra — cRy,

dV;

_c—izg = —1,Vp + Bala(My — V3),



( dS
= =81 — 03 SsVs — S + (s — oS5,
dls
— =cly+a3SsVs — (u+v+0)I3 — cls,
{ & (2.2¢)
dR3 '
T cRy + vIs — (1 + ¢)Rs — cRa,
dVs
| =5 = Vs + Bsls(Ms — V).
Theorem 2.1. All forward solutions in R}f of (2.2) eventually enter Q = ) x Qy x Qs,
i-1
where ; = {(Si, I, R, Vi) € RY : Si+ L+ R < m,w < M;li=1,2,3, and Q is

positively invariant for (2.2).

Proof. Let N/'(t) be the total number of host population in patch 4 at time ¢. Then we have

dNY h h
=TT (u+ )Ny =6 <7 — (u+c)Ny
and
dN} h h h b
“‘d‘t_‘ - CNi'—*l - (/J:‘*" C)N’L - 5.[1 S CNi—-l - (l,l;"l" C)NZ 3 1 = 2, 3.
By a simple comparison theorem [22], the proof is complete. O

3 Mathematical analysis
It is easy to see that (2.2) has a unique disease-free equilibrium

E° = (S:(L)v I?> R(IJ) V107 387 Ig’ Rgv VZO’ Sg» Ig’ Rg’ VSO)
__Tfj.._ 0,0,0)

(v

Note that system (2.2) is in a block-triangular form, the dynamics of patch 1 are independent
of patch 2 and patch 3 while the dynamics of patch 2 are independent of patch 3.

T TC
= __aoaoao)————“)oa(xoa
(u+c (b +c)?

3.1 The first patch

Obviously, E? = (S?,0,0,0) is the unique disease-free equilibrium of subsystem (2.2a). To
calculate the basic reproduction number corresponding to (2.2a), we order the infected state
variables by (I1, R;,V;). Following the method and notations of van den Driessche and
Watmough [24], the linearization of (2.2a) at E? gives

0 0 ous? p+y+d+c 0 0
F = 0 0 0 and V = — p+¢+c 0 |.

,BlMl 0 0 0 0 %1



Direct calculation yields

(p+v+d+0)t 0 0
V3= | gty 8+ p+ T (™ 0
0 0 vy

and the basic reproduction number for the first patch equals

. -1y _ 06139_ B My N wmr B1My
Rao = p(FV )—\/ v p+y+otce \(u+oy pty+s+c

which depends on all parameters except ¢, the rate of loss of immunity for animals. (R0)?
is proportional to S? and Mj, so more mosquitoes and more animals lead to more disease
transmission.

Theorem 3.1. The disease-free equilibrium EY of (2.2a) is globally asymptotically stable in
O if Rip < 1 and unstable if Ry > 1.

Proof. Tt is easy to show the local stability of E? by verifying (A1)-(A5) in van den Drissche
and Watmough [24].
Consider a Lyapunov function L; = v1(p + ¢)I; + ayrVi on €. Then

Ly =wv(p+c)l] + arVy
= (p+c)arSiVi —n(p+o)(p+y+06+c)y — aarmiVi + anrfy L (M1 — VA1)
= [+ c)euS1 — arrn|Vi + [oaru(My = Vi) — n(p+ o) (p+ v+ 6 + o)1y
= wn(p+c)ar (S — SHVi + [aarfi(My = Vi) —na(u+ ) (p+ v+ 5+ o)y
<larf(My—Vi) —n(p+o)(p+y+d+clh in O
< lawrfiMy —n(p+c)(p+v+ 6 +0))h
= (R —Dulp+o)(p+r+d+olh
<0 if Ry <L

The largest compact invariant set, denoted by I'y, in {(S1, [1, R1, Vi) € @ @ L] = 0} is the
singleton {E?}.
Case 1: Ry < 1. Preceding calculation shows that I; = 0. So

dv; dR
_cﬁl = -1 V; and Tit—l =—(u+{+c)R;.
Backward continuation of a compact invariant set indicates that Vi = 0 and F; = 0. Thus
' ds
' —d.ti =r—(u+c)Sh.

This means that S; = S? and hence I'; = {E?}.

Case 2: Rjip = 1. The preceding calculation gives either V; = 0 or [; = 0. The latter

case proceeds as before. Suppose Vi = 0, then %Yt—l = 1My = 0 which implies I; = 0.

Once again this can proceed as before.
By LaSalle’s Invariance Principle [14], E? is globally asymptotically stable in . O
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Theorem 3.2. If Rip > 1, then system (2.2a) has a unique endemic equilibrium, denoted
by EY = (S},IF, Ry, V), which is locally asymptotically stable. Moreover, the disease is
uniformly persistent in 8, the interior of Oy, i.e., there is a constant ¢ > 0 such that any
solution of (2.2a) starting at a point of O satisfies

li{ginf(fl(t),Rl(t),%(t)) > (e,¢,€).
Proof. If B} = (Sf, I}, R}, V}*) is a positive equilibrium of (2.2a), then it satisfies the follow-
ing system of algebraic equations

r— o151 Vi — uSy + (Ry — ¢S =0,
04131V1 - (M + v+ 5)[1 — C[l = O,

3.1
vy = (u+ )Ry — cRy =0, (3.1)
—Vi + ALy (My — V) = 0.
Solving Si, Ry and V; in terms of [; from the last three equations of (3.1), that is,
S, = (B+v+6+c)(n+BAd) R, = vl - Brli My
a1 My ’ p+{+c n+ b’
and substituting them into the first equation, we obtain
p+y+d+c v
r—(p+y+86+c) — (p+ o) r———=(Bl; +1n) + (——1I, =0,
(:u‘ Y ) 1 (:u ) alﬂlj\/[l (/61 1 1) CM+C+C 1
which can be simplified to a linear equation
p+v+d+c ¢y p+y+0+c
4] - I —_—etyy — 1| =0,
(7 +6+0) +(uto) M, M+C+c] () YNV r| =0

The coefficient of I is always positive and the constant part is negative if and only if Ryo > 1.
Hence, system (2.2a) has a unique endemic equilibrium if and only if Ryg > 1.

Next we study the local stability of E} by using the Routh-Hurwitz criterion. The
Jacobian matrix of system (2.2a) at the endemic equilibrium Ff is

"alv}* - P 0 ¢ —alS{‘
o T ok Tk o Vi* —(p+~v+06 0 o1 S
J(Slv-[lv 1»‘/1)= 101 (p ,Y’Y ) ___(p_{_c) 101 )
0 Bu(My — V) 0 —u — Bl

where p = u -+ ¢ and the corresponding characteristic equation is
Pi(A) = (A+p+ QN+ b02A% + bid + bo) — Can Vi y(A + vy + BiIT) = 0,
where

bg:Q1%*+2p+7+5+U1+ﬂ1]f > 0,
by = (V" +p)(p+ v+ 8) + (V) + 20+ v+ 0) (11 + Buly) — cnp1 ST (My — V)),
bo = (i Vi" +p)(p+ v+ 0)(h + Bul]) — an S STp(My — V7).



It follows from the second and fourth equations of (3.1) that
(p+v+0)n = a1 S7 (M1 = Vy)
and hence

b= (Vi +p)p+v+d+un)+ (V¥ +20+v+ 85I >0,
bgp = ([)+’Y + (5)(0411/1‘/1* + 011,61‘/1*.[; -+ pﬁllf) >0 and b1by > bg.

Then
Pi(A) =X+ X+ o) +agA+co =0,
where
cs=p+C+by>0,c0=_(p+ba+b >0,

c1 = (p+ by 4 bo — CarVi"y = pby + by + ((by — au V"y) > 0,
co = (p+ Qbo — CanVi'y (1 + Buly) = pbo + ((bo — ca Vi*y(v1 + BuI})) > 0.

Now it suffices to show that c;cacs > ¢ + ciep. In fact

cicacs — €3 — cacy = ci(cacs — 1) — caco
=ciles(p + ()ba + (b1b2 — bo) + (a1 V] — cico
>cics(p + ¢)ba — cic0 = caler(p + ()b — cacq]
=c3[(p + ¢)*(brbz — bo) — Can Viv((p + )bz — (p -+ { + ba) (w1 + Bu 7))
>eal(p + )¢ (brda — bo) — CaaVi™y(p + ()bo]
=cz(p + ()C(brba — by — a3 Vi*yba) > 0.

Thus, the Routh-Hurwitz criterion implies that all eigenvalues of the characteristic equation
have negative real parts. Hence, the endemic equilibrium is locally asymptotically stable.
Finally, the uniform persistence of system (2.2a) in % can be proved by applying Theorem
4.6 in Thieme [23]. We omit the proof here, since it is similar to that of Theorem 2.5 in Gao
and Ruan [10]. O

Remark 3.3. It is worth mentioning that Yang et al. [26] studied a similar vector-host
epidemic model with an SIR structure for the host population and without disease-induced
host deaths. They used the method of the second additive compound matrix (see [15] and
references therein) to establish the global stability of the endemic equilibrium when it exists.
Unfortunately, we cannot use that approach to establish the global result because of the
higher complexity in our model.

3.2 The second patch

By a simple comparison theorem, we conclude that the disease is uniformly persistent in Q°
if it is uniformly persistent in (9. Namely, the disease will persist in all three patches if
Rio > 1. Indeed, it follows from Theorem 3.2 that for any fixed initial data we have

dl
L zee—(utr+i+oh

9



for ¢ large enough. So litm inf Ip(t) > ce/(pu+y+ 6 +c). Similarly, we can find positive lower
—00

limits for all other variables. If the disease dies out in patch 1, i.e., Ryp < 1, then each
solution of (2.2a) with nonnegative initial data converges to EY and the limiting system of
(2.2b) is

ds,

dt

dl

-Cl*f = 0SoVa — (+ v+ 0) Iy — cly,

(3.2)

= ¢S — apSyVo — Sy + (Ry — ¢Ss,

dR
“CEE = Iy — (b + )Ry — cRy,
dV;
gf = —1,Vy + Boly(My — V).

Comparing (3.2) with (2.2a), we immediately find that (3.2) possesses a unique disease-free
equilibrium E§ = (59,19, R, V) = (cSY/(u + ¢),0,0,0) = (rc/(u + ¢)?,0,0,0) and obtain
the basic reproduction number of patch 2 as

R = 04258_ BaMy _ ogrc Ba My
20 ve pu+vy+d+tc (p+e)vy p+y+d+c

If Rip £ 1 and Ry < 1, then the disease goes extinct in the first two patches; if Rig < 1
and Rgg > 1, then the disease dies out in the first patch but persists in the last two patches.

3.3 The third patch

Similarly, if Rip < 1 and Rgp < 1, we obtain a limiting system of (2.2¢) as follows:
a5
dt

dl.
*sz' = agS3Va — (p+ v+ 08) I3 —cls,
(3.3)

= ¢S5 — agS3Vs — uSs + (Rs — ¢S,

dR

"Ef =l3 — (u+ )Ry — cRs,
dVs

—cf = —13V3 + B313Us,

System (3.3) has a unique disease-free equilibrium E§ = (59,139, R}, V{) = (eS3/(p +
c),0,0,0) = (rc?/(u + c)3,0,0,0) and the basic reproduction number of patch 3 is given

by
R = ngsg ,33]\/_[3 . Cllg'l‘c2 ,BgMg
30 — ) = 3 .
vs  pt+y+dtc (b+c)Pvs p+vy+d+e

If Rig £ 1, Roo £ 1 and Ry < 1, then the disease goes extinct in all three patches;
if Rip <1, Rog £ 1 and Rag > 1, then the disease dies out in the first two patches, but
persists in the third patch. So we have the following result:

10



Theorem 3.4. For the full model (2.2), if R1o > 1, the disease persists in all three patches;
if Rio <1 and Rog > 1, the disease dies out in the first patch but persists in the remaining
two patches; if Rig < 1, Rag < 1 and Ry > 1, the disease dies out in the first two patches,
but persists in the last patch; if Rig < 1, Reo < 1 and Rgp < 1, the disease dies out in all
three patches and E° is globally asymptotically stable.

Theorem 3.5. System (2.2) has a unique endemic equilibrium, denoted E* = (S}, If, R}, V¥,
Sy, I3, RS, Vo, S%, I3, R, V), if and only if Rig > 1 and it is locally asymptotically stable
when it exists.

Proof. The necessity is a straightforward consequence of Theorem 3.1. To prove the existence
and uniqueness of an endemic equilibrium as Ry > 1, it suffices to show that the system

dS;
dt

al;
—Ei— = CI:_I + 0 S; Vi — ([L + v+ 5).[1 — el
: (3.4)

= CS:_l — OliSiVi —_ ,LLSZ -+ CRl — CS,;,

adR; A
- = CRL1 7L = (p+ QRi — chy,
da;:i = —v;Vi+ Bili(M; — V3),

has a unique positive equilibrium for i = 2,3. To compute the constant solution of (3.4),
we set the right hand side of each of the four equations equal to zero and direct calculations
yield

: (bty+d+co)li—cliy Bili+uv  cRi, +7I
* I — ) i it I8 v =0,
CS’L-1+C i—1 (/1’+'7+ +C)I (/‘L+C) a; IB'L]VI’L'[Z +C ,U"I‘C'JFC
which can be reduced to a quadratic equation
f(]l) = CI,ZI? +a1l; + ag =0, (35)
where ag = ——(1+ aiMi)(M+’Y+5+C)+Cm <0,01=cS+clf— Ofi,BiMi((u+
cR} wtc
§ i — cIf Bi) + (——=— and ap = It v > 0.
T8 O = efLaf) + (o and o = el

Thus, (3.5) has exactly one positive root, I7. To check the positivity of other variables,
we need to verify that I} > cI} ; /(u+v+8+c), or equivalently, f(cI},/(u+v+d+c)) > 0.

In fact, f(clf,/(p+ v+ 6 +c)) equals

Cye?(Ir))? 28 . Ix CcARy | IF
i—1 + f—1+g—1 + 141 >0
(p+C+e)p+r+6+0)? p+y+d+c (p+l+ce)lu+ty+d+o

The local stability of the endemic equilibrium (S}, I}, Rf, V;*) of system (3.4) can be proved

YT

in a way similar to that of Ef in Theorem 3.2. d
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3.4 Model with restriction

Research in RVF indicates that an infection leads to a durable, probably life-long, immunity
in animals [21]. In any event, the immunity period is relatively longer than the duration of
movement. We may assume that the rate of loss of immunity ¢ equals zero and use an SIR
model for the host population. In this case, since R; does not appear in other equations of
(2.2), system (2.2) can be reduced to

( dS
—c—lil =7 —aSiVi — pS — ey,
dly
= =SV = (p+y+0)h —ch, (3.6a)
dV;
\ ._El_t_l_ = —-1/1‘/1 —{—,81]1(]\/[1 - %)7
%%=C&~aﬁm@—w%—c&,
dr.
d_tz =cli + apS2Va — (u+ v+ 6)I2 — cly, (3.65)
dVs
| ..C_if. = —1yVay + ,32]2(]\/12 - ‘/2)7
%‘% = ¢Sy — 393 V3 — puS3 — ¢S,
dl.
"d—tgi = clp + a3S3V3 — (u+ v+ 6)Is — cls, (8.6c)
dV;
\ _Zi_té = —13Vs + Bal3(Ms — Va).

The following result can be proved in a way similar to that of Theorem 4.3 in Yang et al.
[26]. Consequently, the disease dynamics of (3.6) are completely determined by the basic
reproduction numbers Ry for i = 1,2,3.

Theorem 3.6. For system (3.6), if Rip > 1, then the disease persists at an endemic equi-
librium level in all three patches ; if Rigp < 1 and Ryg > 1, then the disease dies out in
the first patch but persists at an endemic equilibrium level in the remaining two patches; if
Rio <1, Rog <1 and Rag > 1, then the disease dies out in the first two patches but persists
at an endemic equilibrium level in the last patch; if Rig < 1, Roo < 1 and Rao < 1, then the
disease dies out in all three patches.

3.5 The relation between Ry and model parameters

It follows from Theorem 3.4 that the disease dies out in all patches if and only if Ry < 1
for 7 = 1,2,3. In other words, to eliminate the disease from the whole system, all three
threshold parameters Rig, R2o and R3p must be reduced to be less than 1. To do so, we
should study how the basic reproduction numbers vary with the model parameters which
can help us design highly efficient control strategies. Recall that

9 Oli'l"Ci—l B M;

Y= -~ . ,7:21,2,3.
O (Ao pty+itc
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Obviously, R4 is strictly increasing in «y, B;, M; or r, and strictly decreasing in v;, i,y or 6.
An increase in the movement rate, ¢, will decrease R1g. The dependence of R on ¢ becomes
more complicated if ¢ > 1, since ¢ appears in both the numerator and denominator of the
formula for R,

Proposition 3.7. Fori > 1, there exists some ¢f such that the basic reproduction number
R is strictly increasing in c if ¢ € (0,c}) and strictly decreasing if ¢ € (¢}, 00). Furthermore,
(t=1p/2<c < (i—1)p.

Proof. Let g;(c) be the partial derivative of R2) with respect to ¢. Then

_ O!i'l”ﬂi]\/.[i 1%, ¢l
9:(c) = v; 8c<(u+c)i(u+fy+5+c))

_arBiMs i ((=Dp+o)ptytite)—cilpty+dte)—clpto)
Vi (4o (u+vy+0d+c)?

_arBiM; i ip(pty+dte) - (pro)pty+dte)—clpto
Vi (p+o) (p+y+d+c)?

cirfiMy ;5 —2¢" — (y+ 0+ (@ —iu)e+ (- Vu(p+v+9)

- c C . T

Vi (p+ o)t (p+v+6+c)?

and the sign of g;(c) is the same as that of
hi(c) = =26 = (Y + 8+ (3 — e+ (i ~ Dulu + 7 +9).
Since h;(0) = (¢ — Vu(p + v+ 6) > 0, the equation h;(c) = 0 has exactly one positive
root, denoted by cf, satisfying h;(c) > 0if ¢ € (0,¢}) and h;(c) < 0if c € (cf,00). Note that
hi(kp) = = 2K 1% — (v + 6 + (3 = u)ku + (1 — Dp(p +v +9)
=(-2K — (3 = i)k + (i = D] — (v + ) — (i = Dy + )
=(k+1)(—2k+i—Dp2+(G—k—1)(y+08u fork>0.
In particular, we have
hi((i — 1)) = —i(i — 1)p? < 0 and hy((G — Dp/2) = (@ — 1)(y+8)u/2 >0, i > 1,
which implies ¢} € ((¢ — 1)p/2, (i — 1)p). O
Remark 3.8. The duration of movement, 1/c, is about a few weeks or months, while the life
span of an animal, 1/u, could be a couple of years or even longer. Namely, the timescale of
the movement is very short relative to the host population dynamic timescale. So generally

speaking, Ry is decreasing in ¢ and shortening the duration of host movement could reduce
the possibility of a disease spread.

Now we perform a sensitivity analysis of the basic reproduction number R;p to model
parameters to determine how best to reduce initial disease transmission. The normalized
forward sensitivity index [6] of R;p to a parameter p is defined as

., ORyp _p
T = .
r Op 8 Rio
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) ) . o1 1 .. ¥
Fori=1,2,3 find that !, =71% =71, =T, ==, 1T}, =—=, T =—
ort=Sc weln w“é“i BT M e T tu T T Sy T T T Y Y 5 o)
1 ) 1 e
>3 and T§ = R > —5 In addition, if ¢ > p then
i _iptytotut(ptop 1
Ti = — >
H 20u+c)p+v+d+c) 2

and

i _ 28+ (Y + 0+ (B —)pe—(i— Du(p+v+4) L
¢ Au+c)p+y+d+c) 2’
So R,y is most sensitive to the movement rate c.

4 Numerical simulations

In this section; we conduct numerical simulations to confirm our analytical results. The
model uses a daily time step and some of the parameter values are chosen from the data in
Gaff et al. [9] and the references therein.

Firstly, we explore the relation between R and the travel rate c. We use the following
set of parameter values: r = 30, = 1.2x107%,6 = 0.1,y = 0.4, = 5x 1073, M} = 80, M, =
1000, M3 = 100,v; = 0.06,; = 0.002 and B; = 0.002 for ¢ = 1,2,3. Figure 1 shows how
the basic reproduction number varies as a function of the livestock movement rate ¢, in the
range ¢ € [0,0.5]. As predicted by Proposition 3.7, the curve of Ry is constantly decreasing,
and the curves of Ry and Rgag are increasing for small ¢ and then decreasing.

— Ry i
Ry
Rao 7
. .
4 . . -1
2F .
0 13 1 i 1 1 1 I 1 I
0 0.05 0.1 0.1 0.2 0.25 0.3 0.35 04 0.45 0.5

Figure 1: The curves of the basic reproduction number of patch 4, Ry, versus c.

Now we fix ¢ at 0.3 and the respective basic reproduction numbers are Rip = 0.8143 <
1,Rao = 2.8731 > 1 and Rz = 0.9067 < 1. To consider a hypothetical disease invasion
scenario, we set the initial data of patches 2 and 3 to zero such that there is no infected
animals or mosquitoes in patches 2 and 3 at the beginning of travel. The disease dies out in
patch 1, but persists in patches 2 and 3, which is coincident with Theorem 3.4 (see Figures
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2 and 3). This may represent an interesting phenomenon regarding the role that animal
movement plays in the spatial spread of RVF from Sudan to Egypt. Though the disease is
introduced to patch 2 from patch 1, it goes extinct in its origin because of lower mosquito
density in patch 1. Patch 2 (the Nile) has high mosquito population density and the disease
will reach an endemic level once it appears. Patch 3 cannot sustain a disease alone, but this
becomes possible because of continuous immigration of infected animals from patch 2.

30 T 1 T T L | E— ;
‘ o D
. e
250 . 2|
: I,
20} , -
15} .
10l .
5@ .
k‘ 1 A L L 1 1 ] 1 I
0 20 40 60 80 100 120 140 160 180 200
fime t

Figure 2: Numerical simulations of system (2.2a) showing I; vs t. Initial conditions: 5(0) =
100, I;(0) = 5, R1(0) = 0, V4(0) = 0 and S3(0) = I3(0) = Ry(0) = V2(0) = S3(0) = I3(0) =
Rg(O) = ‘/3(0) =0 Rig<1,Reg>1 and Rgg > 1.

500 T T T  — | | A T -
450} o e
400} vl
350 - i

0 -~ H L ' [} I 1 1 £ 1
0 20 40 60 80 100 120 140 160 180 200
time t

Figure 3: Numerical simulations of system (2.2a) showing V; vs t. Initial conditions: $,(0) =
100,[1(()) = 5,R1(O) = O,%(O) = (0 and Sz(O) - IQ(O) = RQ(O) = ‘/2(0) = 33(0) = 13(0) =
R3(O> = Vg(O) =0. Rig<1,Ro>1and Rg > 1.
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5 Discussion

In this paper, we have formulated a simple epidemic patch model aimed at capturing a
scenario where animals are imported into Egypt from the south and taken north along the
Nile for human consumption, with the risk of a RVF outbreak if some of them are infected.
A similar model might apply to Saudi Arabia and Yemen based on some descriptions [3]. We
have evaluated the basic reproduction number for each patch and established the threshold
dynamics of the model. It is suggested that a small number of imported infectious animals
from Sudan could result in an outbreak of RVF in Egypt. Increasing the recruitment rate of
animals, ¢, or the carrying capacity of mosquitoes, M;, will increase the basic reproduction
number, Ri. So the likelihood of a RVF outbreak is higher when both r and M; are
large. The rate r at which animals are fed in might be determined by demand, which would
be large during Muslim festival periods. For example, millions of animals are imported
and slaughtered as each devout Muslim must traditionally slaughter one animal during the
celebration of Eid al-Adha (also known as the Feast of Sacrifice). The date of Eid al-Adha
varies from year to year as it is linked to the Islamic calendar and more attention should be
paid to the transmission of RVFV when the rainy season (more mosquitoes) corresponds to
the time of the occurrence of festivals [3].

We may assume that some animals starting the journey are recovered. It might be that
way even if no sick animals are starting the journey, since recovered ones could be healthy.
If this happens, the subsystem (2.2a) will become

45,
dt

dl
-Etl = alSlVl - (}l. +")’+ 5)]1 - CIl,
(5.1)

=7 — o5 V1 — S+ (Ry — ¢Sy,

dR
—gt—l =rp+vl — (b+ ()R — cRy,
avy

| 57 = Vi + AL (M - TA),

where rp is a constant recruitment of recovered individuals into patch 1. Let Rl = R —
rr/(p+ (+c)and =7+ (rg/(p+ ¢ +¢). Then (5.1) can be written as

( dS -
,d_tl =7 — a5 V) — uS; — ¢Sy,
dly
—r =SV = (u+v+0)h —ch,
k: (5.2)
S2 =k = (u+ O — oy,
dV;
d_tl = —nVi + B L(M; — V1),
\

which is qualitatively equivalent to (2.2a). Therefore, all of the aforementioned results still
hold for system (5.2) or (5.1) and its associated new full system.

The work presented in this paper enables us to gain useful insights into the spread of
RVF among different regions. However, there are other aspects we have not considered in
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this study. Can we simplify our SIRS model to an SI/SIR model for hosts? Do we need
more detailed epidemiological models, for example SEIR for hosts, SEI for vectors? We
may want to think about extending the model to a larger and more realistic patch network,
for example if we want to study how changing the network affects disease spread, but we
would need to know at least something qualitative about movement patterns of herds to set
the movement coefficients. Seasonal effects on mosquito population and time-dependence of
animal importation may also be incorporated. Data for disease, vector and animal migration
from RVF endemic regions need to be collected so that we can further test the validity of
our model.
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